Parameter Tuning in Support Vector Regression for Large Scale Problems
نویسندگان
چکیده
منابع مشابه
SVMTorch: Support Vector Machines for Large-Scale Regression Problems
Support Vector Machines (SVMs) for regression problems are trained by solving a quadratic optimization problem which needs on the order of l memory and time resources to solve, where l is the number of training examples. In this paper, we propose a decomposition algorithm, SVMTorch, which is similar to SVM-Light proposed by Joachims (1999) for classi cation problems, but adapted to regression p...
متن کاملLarge-scale linear support vector regression
Support vector regression (SVR) and support vector classification (SVC) are popular learning techniques, but their use with kernels is often time consuming. Recently, linear SVC without kernels has been shown to give competitive accuracy for some applications, but enjoys much faster training/testing. However, few studies have focused on linear SVR. In this paper, we extend state-of-the-art trai...
متن کاملA New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems
There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...
متن کاملStochastic Gradient Twin Support Vector Machine for Large Scale Problems
Stochastic gradient descent algorithm has been successfully applied on support vector machines (called PEGASOS) for many classification problems. In this paper, stochastic gradient descent algorithm is investigated to twin support vector machines for classification. Compared with PEGASOS, the proposed stochastic gradient twin support vector machines (SGTSVM) is insensitive on stochastic samplin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Intelligent Systems
سال: 2015
ISSN: 1976-9172
DOI: 10.5391/jkiis.2015.25.1.015